Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.030
Filtrar
1.
J Med Virol ; 96(4): e29580, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38566572

RESUMO

A persistent infection with human papillomavirus (HPV) can induce precancerous lesions of the cervix that may ultimately develop into cancer. Cervical cancer development has been linked to altered microRNA (miRNA) expression, with miRNAs regulating anchorage-independent growth being particularly important for the progression of precancerous lesions to cancer. In this study, we set out to identify and validate targets of miR-129-5p, a previously identified tumor suppressive miRNA involved in anchorage-independent growth and HPV-induced carcinogenesis. We predicted 26 potential miR-129-5p targets using online databases, followed by KEGG pathway enrichment analysis. RT-qPCR and luciferase assays confirmed that 3'UTR regions of six genes (ACTN1, BMPR2, CAMK4, ELK4, EP300, and GNAQ) were targeted by miR-129-5p. Expressions of ACTN1, CAMK4, and ELK4 were inversely correlated to miR-129-5p expression in HPV-transformed keratinocytes, and their silencing reduced anchorage-independent growth. Concordantly, miR-129-5p overexpression decreased protein levels of ACTN1, BMPR2, CAMK4 and ELK4 in anchorage-independent conditions. Additionally, c-FOS, a downstream target of ELK4, was downregulated upon miR-129-5p overexpression, suggesting regulation through the ELK4/c-FOS axis. ACTN1 and ELK4 expression was also upregulated in high-grade precancerous lesions and cervical cancers, supporting their clinical relevance. In conclusion, we identified six targets of miR-129-5p involved in the regulation of anchorage-independent growth, with ACTN1, BMPR2, ELK4, EP300, and GNAQ representing novel targets for miR-129-5p. For both ACTN1 and ELK4 functional and clinical relevance was confirmed, indicating that miR-129-5p-regulated ACTN1 and ELK4 expression contributes to HPV-induced carcinogenesis.


Assuntos
MicroRNAs , Infecções por Papillomavirus , Lesões Pré-Cancerosas , Neoplasias do Colo do Útero , Feminino , Humanos , Papillomavirus Humano , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/patologia , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Queratinócitos/metabolismo , Queratinócitos/patologia , Carcinogênese/genética , Carcinogênese/patologia , Lesões Pré-Cancerosas/patologia , Proliferação de Células/genética , Proteínas Elk-4 do Domínio ets , Actinina/genética
2.
Sci Rep ; 14(1): 7808, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565871

RESUMO

Colonoscopy is accurate but inefficient for colorectal cancer (CRC) prevention due to the low (~ 7 to 8%) prevalence of target lesions, advanced adenomas. We leveraged rectal mucosa to identify patients who harbor CRC field carcinogenesis by evaluating chromatin 3D architecture. Supranucleosomal disordered chromatin chains (~ 5 to 20 nm, ~1 kbp) fold into chromatin packing domains (~ 100 to 200 nm, ~ 100 to 1000 kbp). In turn, the fractal-like conformation of DNA within chromatin domains and the folding of the genome into packing domains has been shown to influence multiple facets of gene transcription, including the transcriptional plasticity of cancer cells. We deployed an optical spectroscopic nanosensing technique, chromatin-sensitive partial wave spectroscopic microscopy (csPWS), to evaluate the packing density scaling D of the chromatin chain conformation within packing domains from rectal mucosa in 256 patients with varying degrees of progression to colorectal cancer. We found average packing scaling D of chromatin domains was elevated in tumor cells, histologically normal-appearing cells 4 cm proximal to the tumor, and histologically normal-appearing rectal mucosa compared to cells from control patients (p < 0.001). Nuclear D had a robust correlation with the model of 5-year risk of CRC with r2 = 0.94. Furthermore, rectal D was evaluated as a screening biomarker for patients with advanced adenomas presenting an AUC of 0.85 and 85% sensitivity and specificity. artificial intelligence-enhanced csPWS improved diagnostic performance with AUC = 0.90. Considering the low sensitivity of existing CRC tests, including liquid biopsies, to early-stage cancers our work highlights the potential of chromatin biomarkers of field carcinogenesis in detecting early, significant precancerous colon lesions.


Assuntos
Adenoma , Neoplasias Colorretais , Humanos , Inteligência Artificial , Detecção Precoce de Câncer , Carcinogênese/patologia , Colonoscopia , Cromatina/genética , Biomarcadores , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Adenoma/diagnóstico , Adenoma/genética , Adenoma/patologia
3.
Int J Mol Sci ; 25(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38542378

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies worldwide, while it persists as the fourth most prevalent cause of cancer-related death in the United States of America. Although there are several novel therapeutic strategies for the approach of this intensely aggressive tumor, it remains a clinical challenge, as it is hard to identify in early stages, due to its asymptomatic course. A diagnosis is usually established when the disease is already in its late stages, while its chemoresistance constitutes an obstacle to the optimal management of this malignancy. The discovery of novel diagnostic and therapeutic tools is considered a necessity for this tumor, due to its low survival rates and treatment failures. One of the most extensively investigated potential diagnostic and therapeutic modalities is extracellular vesicles (EVs). These vesicles constitute nanosized double-lipid membraned particles that are characterized by a high heterogeneity that emerges from their distinct biogenesis route, their multi-variable sizes, and the particular cargoes that are embedded into these particles. Their pivotal role in cell-to-cell communication via their cargo and their implication in the pathophysiology of several diseases, including pancreatic cancer, opens new horizons in the management of this malignancy. Meanwhile, the interplay between pancreatic carcinogenesis and short non-coding RNA molecules (micro-RNAs or miRs) is in the spotlight of current studies, as they can have either a role as tumor suppressors or promoters. The deregulation of both of the aforementioned molecules leads to several aberrations in the function of pancreatic cells, leading to carcinogenesis. In this review, we will explore the role of extracellular vesicles and miRNAs in pancreatic cancer, as well as their potent utilization as diagnostic and therapeutic tools.


Assuntos
Carcinoma Ductal Pancreático , Vesículas Extracelulares , MicroRNAs , Neoplasias Pancreáticas , Humanos , MicroRNAs/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/patologia , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/terapia , Carcinogênese/patologia
4.
EBioMedicine ; 102: 105053, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471398

RESUMO

BACKGROUND: To date, because of the difficulty in obtaining normal parathyroid gland samples in human or in animal models, our understanding of this last-discovered organ remains limited. METHODS: In the present study, we performed a single-cell transcriptome analysis of six normal parathyroid and eight parathyroid adenoma samples using 10 × Genomics platform. FINDINGS: We have provided a detailed expression atlas of parathyroid endocrine cells. Interestingly, we found an exceptional high expression levels of CD4 and CD226 in parathyroid endocrine cells, which were even higher than those in lymphocytes. This unusual expression of lymphocyte markers in parathyroid endocrine cells was associated with the depletion of CD4 T cells in normal parathyroid glands. Moreover, CD4 and CD226 expression in endocrine cells was significantly decreased in parathyroid adenomas, which was associated with a significant increase in Treg counts. Finally, along the developmental trajectory, we discovered the loss of POMC, ART5, and CES1 expression as the earliest signature of parathyroid hyperplasia. INTERPRETATION: We propose that the loss of CD4 and CD226 expression in parathyroid endocrine cells, coupled with an elevated number of Treg cells, could be linked to the pathogenesis of parathyroid adenoma. Our data also offer valuable information for understanding the noncanonical function of CD4 molecule. FUNDING: This work was supported by the National Key R&D Program of China (2022YFA0806100), National Natural Science Foundation of China (82130025, 82270922, 31970636, 32211530422), Shandong Provincial Natural Science Foundation of China (ZR2020ZD14), Innovation Team of Jinan (2021GXRC048) and the Outstanding University Driven by Talents Program and Academic Promotion Program of Shandong First Medical University (2019LJ007).


Assuntos
Glândulas Paratireoides , Neoplasias das Paratireoides , Humanos , Glândulas Paratireoides/metabolismo , Glândulas Paratireoides/patologia , Neoplasias das Paratireoides/genética , Neoplasias das Paratireoides/complicações , Neoplasias das Paratireoides/patologia , Regulação para Baixo , Carcinogênese/patologia , Transformação Celular Neoplásica/metabolismo , Hiperplasia/patologia , Linfócitos/metabolismo
5.
Methods Mol Biol ; 2777: 91-98, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478338

RESUMO

Cancer stem cells (CSCs) represent a subpopulation of tumor cells that are thought to be responsible for therapy resistance, recurrence, and metastasis through their capacity to self-renew and differentiate into heterogeneous downstream lineages of cancer cells. Understanding the features of CSCs is crucial for managing cancer disease and establishing potential targeted therapeutics. Tumor sphere formation assay is a widely used in vitro method that selects and enriches the CSC subpopulation from the total population of cancer cells, based on their inherent ability to grow and clonally expand in serum-free and nonadherent culture conditions. Here we provide a detailed methodology to generate and propagate spheres from isolated cell suspensions of tumor tissues and cell lines using a semisolid MatrigelTM-based three-dimensional (3D) culture system.


Assuntos
Carcinogênese , Esferoides Celulares , Humanos , Linhagem Celular Tumoral , Carcinogênese/patologia , Células-Tronco Neoplásicas/metabolismo
6.
Cancer Med ; 13(6): e7118, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38523528

RESUMO

BACKROUND: Inflammation characterized by the presence of T and B cells is often observed in prostate cancer, but it is unclear how T- and B-cell levels change during carcinogenesis and whether such changes influence disease progression. METHODS: The study used a retrospective sample of 73 prostate cancer cases (45 whites and 28 African Americans) that underwent surgery as their primary treatment and had a benign prostate biopsy at least 1 year before diagnosis. CD3+, CD4+, and CD20+ lymphocytes were quantified by immunohistochemistry in paired pre- and post-diagnostic benign prostate biopsy and tumor surgical specimens, respectively. Clusters of similar trends of expression across two different timepoints and three distinct prostate regions-benign biopsy glands (BBG), tumor-adjacent benign glands (TAG), and malignant tumor glandular (MTG) regions-were identified using Time-series Anytime Density Peaks Clustering (TADPole). A Cox proportional hazards model was used to estimate the hazard ratio (HR) of time to biochemical recurrence associated with region-specific lymphocyte counts and regional trends. RESULTS: The risk of biochemical recurrence was significantly reduced in men with an elevated CD20+ count in TAG (HR = 0.81, p = 0.01) after adjusting for covariates. Four distinct patterns of expression change across the BBG-TAG-MTG regions were identified for each marker. For CD20+, men with low expression in BBG and higher expression in TAG compared to MTG had an adjusted HR of 3.06 (p = 0.03) compared to the reference group that had nominal differences in CD20+ expression across all three regions. The two CD3+ expression patterns that featured lower CD3+ expression in the BBG compared to the TAG and MTG regions had elevated HRs ranging from 3.03 to 4.82 but did not reach statistical significance. CONCLUSIONS: Longitudinal and spatial expression patterns of both CD3+ and CD20+ suggest that increased expression in benign glands during prostate carcinogenesis is associated with an aggressive disease course.


Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Próstata/cirurgia , Próstata/patologia , Estudos Retrospectivos , Neoplasias da Próstata/cirurgia , Neoplasias da Próstata/patologia , Linfócitos B/patologia , Carcinogênese/patologia
7.
Cancer Lett ; 589: 216827, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38527692

RESUMO

Lung cancer is the leading cause of cancer-related death worldwide; however, the mechanism of lung carcinogenesis has not been clearly defined. Chronic exposure to hexavalent chromium [Cr(VI)], a common environmental and occupational pollutant, causes lung cancer, representing an important lung cancer etiology factor. The mechanism of how chronic Cr(VI) exposure causes lung cancer remains largely unknown. By using cell culture and mouse models and bioinformatics analyses of human lung cancer gene expression profiles, this study investigated the mechanism of Cr(VI)-induced lung carcinogenesis. A new mouse model of Cr(VI)-induced lung carcinogenesis was developed as evidenced by the findings showing that a 16-week Cr(VI) exposure (CaCrO4, 100 µg per mouse once per week) via oropharyngeal aspiration induced lung adenocarcinomas in male and female A/J mice, whereas none of the sham-exposed control mice had lung tumors. Mechanistic studies revealed that chronic Cr(VI) exposure activated the non-canonical NFκB pathway through the long non-coding RNA (lncRNA) ABHD11-AS1/deubiquitinase USP15-mediated tumor necrosis factor receptor-associated factor 3 (TRAF3) down-regulation. The non-canonical NFκB pathway activation increased the interleukin 6 (IL-6)/Janus kinase (Jak)/signal transducer and activator of transcription 3 (Stat3) signaling. The activation of the IL-6/Jak signaling axis by Cr(VI) exposure not only promoted inflammation but also stabilized the immune checkpoint molecule programmed death-ligand 1 (PD-L1) protein in the lungs, reducing T lymphocyte infiltration to the lungs. Given the well-recognized critical role of PD-L1 in inhibiting anti-tumor immunity, these findings suggested that the lncRNA ABHD11-AS1-mediated non-canonical NFκB pathway activation and PD-L1 up-regulation may play important roles in Cr(VI)-induced lung carcinogenesis.


Assuntos
Cromo , Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , Masculino , Feminino , Animais , Camundongos , Proteínas de Checkpoint Imunológico/metabolismo , NF-kappa B/metabolismo , Transformação Celular Neoplásica/genética , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Ligantes , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Carcinogênese/patologia , Pulmão/patologia , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Serina Proteases/efeitos adversos , Serina Proteases/metabolismo , Proteases Específicas de Ubiquitina/metabolismo
8.
Cancer Lett ; 588: 216744, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38431037

RESUMO

Hepatocellular carcinoma (HCC) stands as a formidable global health challenge due to its prevalence, marked by high mortality and morbidity rates. This cancer type exhibits a multifaceted etiology, prominently linked to viral infections, non-alcoholic fatty liver disease, and genomic mutations. The inherent heterogeneity of HCC, coupled with its proclivity for developing drug resistance, presents formidable obstacles to effective therapeutic interventions. Autophagy, a fundamental catabolic process, plays a pivotal role in maintaining cellular homeostasis, responding to stressors such as nutrient deprivation. In the context of HCC, tumor cells exploit autophagy, either augmenting or impeding its activity, thereby influencing tumorigenesis. This comprehensive review underscores the dualistic role of autophagy in HCC, acting as both a pro-survival and pro-death mechanism, impacting the trajectory of tumorigenesis. The anti-carcinogenic potential of autophagy is evident in its ability to enhance apoptosis and ferroptosis in HCC cells. Pertinently, dysregulated autophagy fosters drug resistance in the carcinogenic context. Both genomic and epigenetic factors can regulate autophagy in HCC progression. Recognizing the paramount importance of autophagy in HCC progression, this review introduces pharmacological compounds capable of modulating autophagy-either inducing or inhibiting it, as promising avenues in HCC therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Autofagia , Apoptose , Carcinogênese/patologia , Linhagem Celular Tumoral
9.
Neoplasia ; 50: 100981, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422751

RESUMO

PURPOSE: Helicobacter pylori (H. pylori) is a significant risk factor for development of gastric cancer (GC), one of the deadliest malignancies in the world. However, the mechanism by which H. pylori induces gastric oncogenesis remains unclear. Here, we investigated the function of IL-6 in gastric oncogenesis and macrophage-epithelial cell interactions. METHODS: We analyzed publicly available datasets to investigate the expression of IL-6 and infiltration of M2 macrophages in GC tissues, and determine the inter-cellular communication in the context of IL-6. Human gastric epithelial and macrophage cell lines (GES-1 and THP-1-derived macrophages, respectively) were used in mono- and co-culture experiments to investigate autocrine-and paracrine induction of IL-6 expression in response to H. pylori or IL-6 stimulation. RESULTS: We found that IL-6 is highly expressed in GC and modulates survival. M2 macrophage infiltration is predominant in GC and drives an IL-6 mediated communication with gastric epithelium cells. In vitro, IL-6 triggers its own expression in GES-1 and THP-1-derived macrophages cells. In addition, these cell lines are able to upregulate each other's IL-6 levels in an autocrine fashion, which is enhanced by H. pylori stimulation. CONCLUSION: This study indicates that IL-6 in the tumor microenvironment is essential for intercellular communication. We show that H. pylori enhances an IL-6-driven autocrine and paracrine positive feedback loop between macrophages and gastric epithelial cells, which may contribute to gastric carcinogenesis.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Helicobacter pylori/metabolismo , Interleucina-6/metabolismo , Células Epiteliais/metabolismo , Mucosa Gástrica/metabolismo , Neoplasias Gástricas/patologia , Macrófagos/patologia , Carcinogênese/patologia , Infecções por Helicobacter/complicações , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/patologia , Microambiente Tumoral
10.
Pathol Res Pract ; 255: 155183, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364651

RESUMO

Epithelial ovarian cancers (EOC) associated with germline or somatic BRCA pathogenetic variants have a significantly higher rate of TP53aberrations. The majority of TP53 mutations are detectable by immunohistochemistry and several studies demonstrated that an abnormal p53 pattern characterized high-grade EOCs. An abnormal p53 immunohistochemical staining in fallopian tube (serous tubal intraepithelial carcinoma (STIC) and "p53 signature" is considered as a precancerous lesion of high-grade EOCs and it is often found in fallopian tube tissues of BRCA germline mutated patients suggesting that STIC is an early lesion and the TP53 mutation is an early driver event of BRCA mutated high-grade EOCs. No relevant data are present in literature about the involvement of p53 abnormal pattern in EOC carcinogenesis of patients negative for germline BRCA variants. We describe TP53 mutation results in relationship to the immunohistochemical pattern of p53 expression in a series of EOCs negative for BRCA1 and BRCA2 germline mutations. In addition, we also investigated STIC presence and "p53 signature" in fallopian tube sampling of these EOCs. Our results demonstrate that TP53 alterations are frequent and early events in sporadic EOCs including also low-grade carcinomas. Also in this series, STIC is associated with an abnormal p53 pattern in fallopian tubes of high-grade EOCs. In summary, TP53 aberrations are the most frequent and early molecular events in EOC carcinogenesis independently from BRCA mutation status.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias das Tubas Uterinas , Neoplasias Ovarianas , Humanos , Feminino , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/patologia , Proteína BRCA1/análise , Mutação em Linhagem Germinativa , Neoplasias Ovarianas/patologia , Proteína Supressora de Tumor p53/metabolismo , Proteína BRCA2/análise , Tubas Uterinas/química , Tubas Uterinas/metabolismo , Tubas Uterinas/patologia , Neoplasias das Tubas Uterinas/genética , Neoplasias das Tubas Uterinas/metabolismo , Neoplasias das Tubas Uterinas/patologia , Cistadenocarcinoma Seroso/patologia , Mutação , Carcinogênese/patologia , Células Germinativas/patologia
11.
Mol Carcinog ; 63(5): 817-833, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38299738

RESUMO

Chronic exposure to arsenic (As) promotes skin carcinogenesis in humans and potentially disturbs resident stem cell dynamics, particularly during maternal and early life exposure. In the present study, we demonstrate how only prenatal arsenic exposure disturbs keratinocyte stem cell (KSC) conditioning using a BALB/c mice model. Prenatal As exposure alters the normal stemness (CD34, KRT5), differentiation (Involucrin), and proliferation (PCNA) program in skin of offspring with progression of age as observed at 2, 10, and 18 weeks. Primary KSCs isolated from exposed animal at Day-2 showed increased survival (Bax:Bcl-xL, TUNEL assay), proliferation (BrdU), and differentiation (KRT5, Involucrin) potential through the activation of pro-carcinogenic IGF2R-MAPK cascade (IGF2R-G(α)q-MEK1-ERK1/2). This was associated with reduced enrichment of histone H3K27me3 and its methylase, EZH2 along with increased binding of demethylase, KDM6A at Igf2r promoter. Altered KSCs conditioning through disturbed Igf2r imprint contributed to impaired proliferation and differentiation and an aggravated tumor response in offspring.


Assuntos
Arsênio , Humanos , Gravidez , Feminino , Camundongos , Animais , Arsênio/toxicidade , Sistema de Sinalização das MAP Quinases , Queratinócitos/metabolismo , Células-Tronco , Carcinogênese/patologia
12.
Nanotoxicology ; 18(1): 69-86, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38420937

RESUMO

In the lung, carcinogenesis is a multi-stage process that includes initiation by a genotoxic agent, promotion that expands the population of cells with damaged DNA to form a tumor, and progression from benign to malignant neoplasms. We have previously shown that Mitsui-7, a long and rigid multi-walled carbon nanotube (MWCNT), promotes pulmonary carcinogenesis in a mouse model. To investigate the potential exposure threshold and dose-response for tumor promotion by this MWCNT, 3-methylcholanthrene (MC) initiated (10 µg/g, i.p., once) or vehicle (corn oil) treated B6C3F1 mice were exposed by inhalation to filtered air or MWCNT (5 mg/m3) for 5 h/day for 0, 2, 5, or 10 days and were followed for 17 months post-exposure for evidence of lung tumors. Pulmonary neoplasia incidence in MC-initiated mice significantly increased with each MWCNT exposure duration. Exposure to either MC or MWCNT alone did not affect pulmonary neoplasia incidence compared with vehicle controls. Lung tumor multiplicity in MC-initiated mice also significantly increased with each MWCNT exposure duration. Thus, a significantly higher lung tumor multiplicity was observed after a 10-day MWCNT exposure than following a 2-day exposure. Both bronchioloalveolar adenoma and bronchioloalveolar adenocarcinoma multiplicity in MC-initiated mice were significantly increased following 5- and 10-day MWCNT exposure, while a 2-day MWCNT exposure in MC-initiated mice significantly increased the multiplicity of adenomas but not adenocarcinomas. In this study, even the lowest MWCNT exposure promoted lung tumors in MC-initiated mice. Our findings indicate that exposure to this MWCNT strongly promotes pulmonary carcinogenesis.


Assuntos
Neoplasias Pulmonares , Pulmão , Camundongos , Animais , Pulmão/patologia , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos , Transformação Celular Neoplásica , Carcinogênese/induzido quimicamente , Carcinogênese/patologia , Exposição por Inalação , Camundongos Endogâmicos C57BL
13.
Methods Mol Biol ; 2769: 27-55, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315387

RESUMO

The hepatotoxic N-nitroso compound diethylnitrosamine (DEN) administered intraperitoneally (i.p.) induces liver neoplasms in rodents that reproducibly recapitulate some aspects of human hepatocarcinogenesis. In particular, DEN drives the stepwise formation of pre-neoplastic and neoplastic (benign or malignant) hepatocellular lesions reminiscent of the initiation-promotion-progression sequence typical of chemical carcinogenesis. In humans, the development of hepatocellular carcinoma (HCC) is also a multi-step process triggered by continuous hepatocellular injury, chronic inflammation, and compensatory hyperplasia that fuel the emergence of dysplastic liver lesions followed by the formation of early HCC. The DEN-induced liver tumorigenesis model represents a versatile preclinical tool that enables the study of many tumor development modifiers (genetic background, gene knockout or overexpression, diets, pollutants, or drugs) with a thorough follow-up of the multistage process on live animals by means of high-resolution imaging. Here, we provide a comprehensive protocol for the induction of hepatocellular neoplasms in wild-type C57BL/6J male mice following i.p. DEN injection (25 mg/kg) at 14 days of age and 36 weeks feeding of a high-fat high-sucrose (HFHS) diet. We emphasize the use of ultrasound liver imaging to follow tumor development and provide histopathological correlations. We also discuss the extrinsic and intrinsic factors known to modify the course of liver tumorigenesis in this model.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Masculino , Camundongos , Animais , Lactente , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/diagnóstico por imagem , Dietilnitrosamina/toxicidade , Camundongos Endogâmicos C57BL , Carcinogênese/patologia , Dieta Hiperlipídica/efeitos adversos , Fígado/diagnóstico por imagem , Fígado/patologia , Ultrassonografia
14.
Methods Mol Biol ; 2769: 77-85, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315390

RESUMO

Hydrodynamic tail vein injection (HTVi), also called hydrodynamic gene transfer (HGT), is attracting increasing interest for modeling hepatic carcinogenesis. This highly versatile approach reproducibly provides efficient in vivo transfection of hepatocytes with naked DNA. Here, we give an in-depth description of the injection procedure, which is key for the success of the method. HTVi requires the injection of a large volume of a solution containing plasmids into the tail vein of the mouse. The transient right heart overload created by the injection forces the blood to flow back into the hepatic veins, enlarging the endothelial fenestrae and permeabilizing a fraction of hepatocytes for a few seconds. This results in the uptake of plasmids by the permeabilized hepatocytes, giving rise to their in vivo transfection. Including the Sleeping Beauty transposon system among the injected plasmids leads to the stable transfection of a subset of hepatocytes. HTVi is a powerful technique which enables numerous applications in liver cancer biology, such as a study of oncogene cooperation, of tumor heterogeneity, and interaction with the tumor microenvironment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Hidrodinâmica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Hepatócitos , Fígado/patologia , Transfecção , Plasmídeos/genética , Carcinogênese/patologia , Microambiente Tumoral
15.
Methods Mol Biol ; 2769: 67-75, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315389

RESUMO

Hepatocellular carcinoma (HCC) is the most common type of liver cancer and the second most common cause of cancer-related death. HCC is associated to chronic diseases such as viral hepatitis, alcoholic, and non-alcoholic fatty liver disease (NAFLD), diabetes mellitus, and obesity, among others. Although pre-clinical models have been investigated to mimic the transition from NAFLD to HCC, they do not accurately reproduce the phenotypic evolution from simple steatosis to steatohepatitis, fibrosis/cirrhosis, and HCC. Hence, these models have failed to demonstrate the influence of diabetes on hepatic carcinogenesis. Here, we report a novel mouse model of HCC triggered by fast-developing diabetes and NAFLD. The first step consists in a single intraperitoneal injection of a low dose of streptozotocin into neonatal C57BL/6J mice to induce type 2 diabetes. In a second step, mice are fed with high-fat diet to accelerate the development of simple steatosis. Continuous high-fat diet exacerbates hepatic fat deposition with increased lobular inflammation (by activation of foam cell-like macrophages) and fibrosis (by activating hepatic stellate cells), two representative pathological traits of steatohepatitis/fibrosis. After 20 weeks, all mice developed multiple HCCs. This model of hepatic carcinogenesis triggered by diabetes mellitus and NAFLD offers the advantage of being rapid and accurately recapitulates the pathogenesis of human HCC without the need of administering hepatic carcinogens.


Assuntos
Carcinoma Hepatocelular , Diabetes Mellitus Tipo 2 , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/patologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/patologia , Estreptozocina , Dieta Hiperlipídica/efeitos adversos , Diabetes Mellitus Tipo 2/patologia , Camundongos Endogâmicos C57BL , Fígado/patologia , Modelos Animais de Doenças , Cirrose Hepática/patologia , Carcinogênese/patologia
16.
Math Biosci Eng ; 21(1): 1186-1202, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303460

RESUMO

Cancer is the result of continuous accumulation of gene mutations in normal cells. The number of mutations is different in different types of cancer and even in different patients with the same type of cancer. Therefore, studying all possible numbers of gene mutations in malignant cells is of great value for the understanding of tumorigenesis and the treatment of cancer. To this end, we applied a stochastic mathematical model considering the clonal expansion of any premalignant cells with different mutations to analyze the number of gene mutations in colorectal cancer. The age-specific colorectal cancer incidence rates from the Surveillance, Epidemiology and End Results (SEER) registry in the United States and the Life Span Study (LSS) in Nagasaki and Hiroshima, Japan are chosen to test the reasonableness of the model. Our fitting results indicate that the transformation from normal cells to malignant cells may undergo two to five driver mutations for colorectal cancer patients without radiation-exposed environment, two to four driver mutations for colorectal cancer patients with low level radiation-exposure, and two to three driver mutations for colorectal cancer patients with high level radiation-exposure. Furthermore, the net growth rate of the mutated cells with radiation-exposure was is higher than that of the mutated cells without radiation-exposure for the models with two to five driver mutations. These results suggest that radiation environment may affect the clonal expansion of cells and significantly affect the development of tumors.


Assuntos
Neoplasias Colorretais , Exposição à Radiação , Humanos , Estados Unidos , Modelos Teóricos , Mutação , Carcinogênese/genética , Carcinogênese/patologia , Neoplasias Colorretais/genética
17.
Cell Death Dis ; 15(2): 177, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418821

RESUMO

Cellular senescence is a stress response mechanism that induces proliferative arrest. Hypoxia can bypass senescence and extend the lifespan of primary cells, mainly by decreasing oxidative damage. However, how hypoxia promotes these effects prior to malignant transformation is unknown. Here we observed that the lifespan of mouse embryonic fibroblasts (MEFs) is increased when they are cultured in hypoxia by reducing the expression of p16INK4a, p15INK4b and p21Cip1. We found that proliferating MEFs in hypoxia overexpress Tfcp2l1, which is a main regulator of pluripotency and self-renewal in embryonic stem cells, as well as stemness genes including Oct3/4, Sox2 and Nanog. Tfcp2l1 expression is lost during culture in normoxia, and its expression in hypoxia is regulated by Hif1α. Consistently, its overexpression in hypoxic levels increases the lifespan of MEFs and promotes the overexpression of stemness genes. ATAC-seq and Chip-seq experiments showed that Tfcp2l1 regulates genes that control proliferation and stemness such as Sox2, Sox9, Jarid2 and Ezh2. Additionally, Tfcp2l1 can replicate the hypoxic effect of increasing cellular reprogramming. Altogether, our data suggest that the activation of Tfcp2l1 by hypoxia contributes to immortalization prior to malignant transformation, facilitating tumorigenesis and dedifferentiation by regulating Sox2, Sox9, and Jarid2.


Assuntos
Senescência Celular , Fibroblastos , Animais , Camundongos , Carcinogênese/patologia , Transformação Celular Neoplásica/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Hipóxia/metabolismo
18.
Cell Death Dis ; 15(2): 130, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346944

RESUMO

Cervical cancer (CC) is a common gynecological malignancy. Despite the current screening methods have been proved effectively and significantly decreased CC morbidity and mortality, deficiencies still exist. Single-cell RNA sequencing (scRNA-seq) approach can identify the complex and rare cell populations at single-cell resolution. By scRNA-seq, the heterogeneity of tumor microenvironment across cervical carcinogenesis has been mapped and described. Whether these alterations could be detected and applied to CC screening is unclear. Herein, we performed scRNA-seq of 56,173 cervical exfoliated cells from 15 samples, including normal cervix, low-grade squamous intraepithelial lesion (LSIL), high-grade squamous intraepithelial lesion (HSIL), and malignancy. The present study delineated the alteration of immune and epithelial cells derived during the cervical lesion progression. A subset of lipid-associated macrophage was identified as a tumor-promoting element and could serve as a biomarker for predicting the progression of LSIL into HSIL, which was then verified by immunofluorescence. Furthermore, cell-cell communication analysis indicated the SPP1-CD44 axis might exhibit a protumor interaction between epithelial cell and macrophage. In this study, we investigated the cervical multicellular ecosystem in cervical carcinogenesis and identified potential biomarkers for early detection.


Assuntos
Carcinoma de Células Escamosas , Infecções por Papillomavirus , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Feminino , Humanos , Colo do Útero/patologia , Displasia do Colo do Útero/diagnóstico , Displasia do Colo do Útero/patologia , Ecossistema , Infecções por Papillomavirus/patologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Carcinoma de Células Escamosas/patologia , Biomarcadores Tumorais/genética , Carcinogênese/genética , Carcinogênese/patologia , Análise de Sequência de RNA , Microambiente Tumoral/genética
19.
Sci Adv ; 10(6): eadk2285, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38324694

RESUMO

Physiologically, FoxA1 plays a key role in liver differentiation and development, and pathologically exhibits an oncogenic role in prostate and breast cancers. However, its role and upstream regulation in liver tumorigenesis remain unclear. Here, we demonstrate that FoxA1 acts as a tumor suppressor in liver cancer. Using a CRISPR-based kinome screening approach, noncanonical inflammatory kinase IKBKE has been identified to inhibit FoxA1 transcriptional activity. Notably, IKBKE directly binds to and phosphorylates FoxA1 to reduce its complex formation and DNA interaction, leading to elevated hepatocellular malignancies. Nonphosphorylated mimic Foxa1 knock-in mice markedly delay liver tumorigenesis in hydrodynamic transfection murine models, while phospho-mimic Foxa1 knock-in phenocopy Foxa1 knockout mice to exhibit developmental defects and liver inflammation. Notably, Ikbke knockout delays diethylnitrosamine (DEN)-induced mouse liver tumor development. Together, our findings not only reveal FoxA1 as a bona fide substrate and negative nuclear effector of IKBKE in hepatocellular carcinioma (HCC) but also provide a promising strategy to target IKBEK for HCC therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Masculino , Camundongos , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Neoplasias Hepáticas/patologia , Camundongos Knockout
20.
Methods Mol Biol ; 2764: 107-129, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38393591

RESUMO

Fibroblasts are an integral cell type of mammary gland stroma, which plays crucial roles in development, homeostasis, and tumorigenesis of mammary epithelium. Fibroblasts produce and remodel extracellular matrix proteins and secrete a plethora of paracrine signals, which instruct both epithelial and other stromal cells of the mammary gland through mechanisms, which have not been fully understood. To enable deciphering of the intricate fibroblast-epithelial interactions, we developed several 3D co-culture methods. In this chapter, we describe methods for establishment of various types of embedded 3D co-cultures of mammary fibroblasts with mammary epithelial organoids, mammary tumor organoids, or breast cancer spheroids to investigate the role of fibroblasts in mammary epithelial development, morphogenesis, and tumorigenesis. The co-culture types include dispersed, aggregated, and transwell cultures.


Assuntos
Células Epiteliais , Glândulas Mamárias Animais , Animais , Humanos , Técnicas de Cocultura , Epitélio/metabolismo , Linhagem Celular , Fibroblastos/metabolismo , Organoides , Carcinogênese/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...